proton). (Found: C, 64.2: H, 5.8; $C_{20}H_{20}O_7$ requires C, 64.51: H, 5.38%).

Alkali fission of A. (0.015 g) A was refluxed with 50% ethanolic KOH (7 ml) for 15 hr. 10 ml $\rm H_2O$ was added and $\rm C_2H_5OH$ removed. After treatment with $\rm Et_2O$, the aq. reaction mixture was acidified and extracted with EtOAc. Removal of EtOAc left a gummy residue from which by preparative TLC (Si gel G, $\rm C_6H_6$ –Me₂CO; 9:2), 2,4-dimethoxybenzoic acid, mp 109–110° (lit. mp 108° [3]), (R_7 0.12), and mono-O-methylphloroglucinol (R_f 0.42) were obtained. The identity of the above samples was confirmed by comparison with authentic samples (CO-IR).

Compound B. This separated as yellowish-orange needles (0.075 g) from CHCl₃-petrol, mp $152-153^{\circ}$. $\lambda_{\max}^{\text{MoOH}}$ nm $(\log \epsilon)$: 250(3.953), 381(4.522); $+\text{AlCl}_3+\text{HCl}:255$, 410 nm: +NaOAc: 250, 380 nm: +NaOMe: 300, 345 nm; ν_{\max}^{RB} cm⁻¹: 2970, 1625 (Found: C, 66.5; H, 6.0; C₁₉H₂₀O₆ requires C, 66.28: H, 5.81°). The acetate of B crystallized from CHCl₃-petrol as yellow plates, mp $116-117^{\circ}$; NMR (CDCl₃, δ): 2.24 (3H, s, -OCOMe), 3.92 (12H, s, $4 \times -\text{OMe}$), 6.53 (4H, br. s, C-3, C-5, C-3' and C-5' protons), 6.91 (1H, d, J = 17 Hz, $C-\alpha$ proton), 7.44 (1H, d, J =

8 Hz, C-6 proton) and 7.68 (1H, d, J = 17 Hz, C- β proton). (Found: C, 65.0; H, 6.0: $C_{21}H_{22}O_7$ requires C, 65.28: H, 5.7%).

Alkali fission of B. 0.01 g B was subjected to alkali fission by the procedure described earlier. By preparative TLC of the reaction mixture in the same solvent system, 2,4-dimethoxy-benzoic acid and di-O-methylphloroglucinol (R_f 0.66, identified by comparison with an authentic sample) were obtained.

Compound C. This was obtained as orange plates (0.015 g) from EtOAc- C_6H_6 . mp 157-159°: λ_{max}^{MeOH} nm (log ϵ): 250(3.902), 378(4.338): + AlCl₃ + HCl: 260, 400 nm: + NaOAc: 255, 395 nm: + NaOMe: 400 nm: ν_{max}^{KBr} cm⁻¹: 3300, 2965, 1615 (Found: C, 65.1: H, 5.7: $C_{18}H_{18}O_6$ requires C, 65.45; H, 5.45%).

REFERENCES

- Wagner, H., Hörhammer, L., Rüger, R., Khalil, E. and Farkas, L. (1969) Tetrahedron Letters 1471.
- 2. Nagarajan, G. R. and Parmar, V. S. (1977) Planta Med. in press.
- 3. Robinson, R. and Venkataraman, K. (1929) J. Chem. Soc. 62.

Phytochemistry, 1977, Vol. 16, pp. 1318-1319. Pergamon Press. Printed in England

FLAVONOID AGLYCONES FROM FLOURENSIA

M. O. DILLON and T. J. MABRY

The Cell Research Institute and the Department of Botany. The University of Texas at Austin, Austin, TX 78712, U.S.A.

Key Word Index—Flourensia; Asteraceae; flavonoids; 5,7-dihydroxyflavanone; methyl ethers of galetin; kaempferol; quercetagetin.

INTRODUCTION

In the continuing biosystematic investigation of the genus Flourensia [1, 2] we report here seven flavonoid aglycones from three Flourensia taxa. Flourensia ilicifolia Blake elaborates a complex mixture of aglycones including: 5,7-dihydroxyflavanone (pinocembrin) (1) [3], kaempferol 3-methyl ether (2) [4], galetin (6-hydroxy-kaempferol) 6-methyl ether (3) [5], galetin 3,6-dimethyl ether (4) [4], quercetagetin 3,6-dimethyl ether (axillarin) (5) [6], and quercetagetin 3,6,3'-trimethyl ether (jaceidin) (6) [3]. Flourensia retinophylla Blake yielded 1 in addition to kaempferol 3,7-dimethyl ether (kumatakenin) (7) [7], a flavonol previously reported from F. cernua DC [2]. Flourensia campestris Griseb. also contains 4 (see Table 1). This is the first report of compounds 1, 3 and 5 in the Asteraceae [8].

All compounds were isolated and identified by UV, NMR and co-chromatography (TLC) with authentic samples. Spectral values and color reactions for these compounds were identical with previously reported values.

EXPERIMENTAL

Two-dimensional chromatograms employed Whatman 3MM paper and were developed first in TBA (t-BuOH-HOAc-H₂O, 3:1:1) and then in 15% HOAc. The NMR spectra were recorded using TMS as an internal standard. Preparation of the TMS ethers and TLC co-chromatography were carried out by standard procedures [3, 8]. Air-dried and powdered leaves (69 g) of Flourensia ilicifolia were extracted exhaustively with CHCl₃. The combined extracts were taken to dryness in vacuo, yielding a dark green syrup (5.8 g). This syrup was chromatographed over polyamide (150 g packed in the first elution solvent); the column was initially developed with CHCl₃-

HO OMe OMe OH OH
$$C$$
 OH C O

Table 1. Flavonoid aglycones from Flourensia taxa

Compound	1	Trival Name	Source*
1	5,7-Dihydroxyflavanone	Pinocembrin	Flourensia ilicifolia† F. retinophylla‡
2	Kaempferol 3-methyl ether		F. retinophytia; F. ilicifolia
3	Galetin 6-methyl ether		F. ilicifolia
4	Galetin 3,6-dimethyl ether		F. ilicifolia F. campestris§
5	Kaempferol 3,7-dimethyl ether	Kumatakenin	F. cernua F. retinophylla
6	Quercetagetin 3,6-dimethyl ether	Axillarin	F. ilicifolia
7	Quercetagetin 3',3,6-trimethyl ether	Jaceidin	F. ilicifolia

^{*} Voucher specimens are deposited in The University of Texas Herbarium Austin, Texas, U.S.A.

EtOAc (3:1) and later with $CHCl_3$ -MeOH-MeCOEt (12:3:1). UV-visible bands on the column were collected in fractions, and individual compounds were purified by TLC in appropriate solvents ($CHCl_3$ -Me₂CO, 9:1; C_6H_6 -MeOH, 9:1). All other taxa (Table 1) were worked up in a similar manner.

Acknowledgements—This research was supported at The University of Texas by the National Science (Grant DEB 76-09320), the Robert A. Welch (Grant F-130) and the Potts-Sibley Foundations.

REFERENCES

1. Dillon, M. O. (1976) Ph.D. Dissertation, University of Texas at Austin.

- Dillon, M. O., Mabry, T. J., Besson, E., Bouillant, M. L. and Chopin, J. (1976) Phytochemistry 15, 1085.
- Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) The Systematic Identification of Flavonoids. Springer Verlag, Heidelberg.
- Rosler, H., Star, A. E. and Mabry, T. J. (1971) Phytochemistry 10, 450.
- Lebreton, P., Wollenweber, E., Southwick, L. and Mabry, T. J. (1971) C.R. Acad. Sci. Ser. C 272, 1529.
- Rodriguez, E., Carmen, N. J., Vander Velde, G., McReynolds, J. H., Mabry, T. J., Irwin, M. A. and Geissman, T. A. (1972) Phytochemistry 11, 3509.
- Valesi, A. G., Rodriguez, E., Vander Velde, G., and Mabry, T. J. (1972) Phytochemistry 11, 2821.
- Harborne, J. B., Mabry, T. J. and Mabry, H. (1975) The Flavonoids. Chapman & Hall, London.

Phytochemistry, 1977, Vol. 16, pp. 1319-1320. Pergamon Press. Printed in England.

FLAVONOIDS OF REAUMURIA MUCRONATA AND THYMELAEA HIRSUTA

MAHMOUD A. M. NAWWAR, MOHEB S. ISHAK, ALEI EL DIN A. EL SHERBIENY and SAYED A. MESHAAL National Research Centre, El-Dokki, Cairo, Egypt

(Revised received 10 February 1977)

Key Word Index—Reaumuria mucronata; Thymelaea hirsuta; Tamaricaceae; Thymelaeaceae; kaempferol 3,7-disulphate; 6,8-C-glucosylapigenin.

The flavonoids of Reaumuria mucronata (Tamaricaceae) and Thymelaea hirsuta (Thymelaeaceae), two plants native to Egypt, have not been previously investigated. However a number of unusual flavonois derivatives have been identified in three Tamarix species. Thus tamarixetin (quercetin 4'-methyl ether) 3-sulphate has been isolated from T. laxa [1], rhamnetin 3'-glucuronide-3,5,4'-trisulphate, 7,4'-dimethylkaempferol 3-sulphate, quercetin 3-isoferulylglucuronide, rhamnocitrin 3-glucoside and 3-rhamnoside, isoquercitrin, tamarixin and taxifolin have been reported variously in the leaves,

flowers, galls and bark of T. aphylla and 7,4'-dimethyl-kaempferol 3-glucoside has been isolated from the leaves of T. nilotica [2-8]. Harborne [9] showed the presence of flavonoid sulphates in the leaves of five other Tamarix species: T. africana, T. canariensis, T. gallica, T. hispida, and T. smyrnensis.

In the present study another new flavonol derivative, kaempferol 3,7-disulphate has been identified in leaves of *Reaumuria mucronata*. Chromatographic, electrophoretic and UV data for the new compound are given in Table 1. Acid hydrolysis with 2N HCl at 100° for

[†] Dillon & Bacon 629 (Mexico. Coahuila: near Parras); ‡ Dillon & Hartman 658 (Mexico. Coahuila: Sierra de Paila); § Dillon & Rodriguez 449 (Argentina. Cordoba: near Yocsino).